PilotCareTrans Net: an EEG data-driven transformer for pilot health monitoring.

阅读:4
作者:Zhao Kun, Guo Xueying
INTRODUCTION: In high-stakes environments such as aviation, monitoring cognitive, and mental health is crucial, with electroencephalogram (EEG) data emerging as a keytool for this purpose. However traditional methods like linear models Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) architectures often struggle to capture the complex, non-linear temporal dependencies in EEG signals. These approaches typically fail to integrate multi-scale features effectively, resulting in suboptimal health intervention decisions, especially in dynamic, high-pressure environments like pilot training. METHODS: To overcome these challenges, this study introduces PilotCareTrans Net, a novel Transformer-based model designed for health intervention decision-making in aviation students. The model incorporates dynamic attention mechanisms, temporal convolutional layers, and multi-scale feature integration, enabling it to capture intricate temporal dynamics in EEG data more effectively. PilotCareTrans Net was evaluated on multiple public EEG datasets, including MODA, STEW, SJTUEmotion EEG, and Sleep-EDF, where it outperformed state-of-the-art models in key metrics. RESULTS AND DISCUSSION: The experimental results demonstrate the model's ability to not only enhance prediction accuracy but also reduce computational complexity, making it suitable for real-time applications in resource-constrained settings. These findings indicate that PilotCareTrans Net holds significant potential for improving cognitive health monitoring and intervention strategies in aviation, thereby contributing to enhanced safety and performance in critical environments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。