Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells.

阅读:5
作者:Brizuela Leyre, Martin Claire, Jeannot Pauline, Ader Isabelle, Gstalder Cécile, Andrieu Guillaume, Bocquet Magalie, Laffosse Jean-Michel, Gomez-Brouchet Anne, Malavaud Bernard, Sabbadini Roger A, Cuvillier Olivier
Sphingosine 1-phosphate (S1P) plays important roles in cell proliferation, differentiation or survival mainly through its surface G-protein-coupled receptors S1P1-5. Bone represents the major site of metastasis for prostate cancer (CaP) cells, which rely on bone-derived factors to support their proliferation and resistance to therapeutics. In the present work we have found that conditioned medium (CM) from the MC3T3 osteoblastic cell line or primary murine and human osteoblast-like cells, as well as co-culture with MC3T3 stimulate proliferation of CaP lines in S1P-dependent manner. In addition, osteoblastic-derived S1P induces resistance of CaP cells to therapeutics including chemotherapy and radiotherapy. When S1P release from osteoblastic cells is decreased (inhibition of SphK1, knock-down of SphK1 or the S1P transporter, Spns2 by siRNA) or secreted S1P neutralized with anti-S1P antibody, the proliferative and survival effects of osteoblasts on CaP cells are abolished. Because of the paracrine nature of the signaling, we studied the role of the S1P receptors expressed on CaP cells in the communication with S1P secreted by osteoblasts. Strategies aimed at down-regulating S1P1, S1P2 or S1P3 (siRNA, antagonists), established the exclusive role of the S1P/S1P1 signaling between osteoblasts and CaP cells. Bone metastases from CaP are associated with osteoblastic differentiation resulting in abnormal bone formation. We show that the autocrine S1P/S1P3 signaling is central during differentiation to mature osteoblasts by regulating Runx2 level, a key transcription factor involved in osteoblastic maturation. Importantly, differentiated osteoblasts exhibited enhanced secretion of S1P and further stimulated CaP cell proliferation in a S1P-dependent manner. By establishing the dual role of osteoblast-borne S1P on both osteoblastic differentiation and CaP cell proliferation and survival, we uncover the importance of S1P in the bone metastatic microenvironment, which may open a novel area of study for the treatment of CaP bone metastasis by targeting S1P.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。