We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest et al. mentioned above compel two studies in the dilute regime that complement recent work of Saintillan & Shelley (Saintillan & Shelley 2013 C. R. Physique 14, 497-517 (doi:10.1016/j.crhy.2013.04.001)): linearized stability analysis of the isotropic state for nanorod pushers and pullers; and an analytical-numerical study of weakly and strongly sheared active polar nanorod suspensions to capture how particle-scale activation affects shear rheology. We find that weakly sheared dilute puller versus pusher suspensions exhibit steady versus unsteady responses, shear thickening versus thinning and positive versus negative first normal stress differences. These results further establish how sheared dilute nanorod pusher suspensions exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions.
Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear.
阅读:11
作者:Forest M Gregory, Phuworawong Panon, Wang Qi, Zhou Ruhai
| 期刊: | Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.700 |
| 时间: | 2014 | 起止号: | 2014 Nov 28; 372(2029):20130362 |
| doi: | 10.1098/rsta.2013.0362 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
