Invariant set theory for predicting potential failure of antibiotic cycling.

阅读:5
作者:Anderson Alejandro, Kinahan Matthew W, Gonzalez Alejandro H, Udekwu Klas, Hernandez-Vargas Esteban A
Collateral sensitivity, where resistance to one drug confers heightened sensitivity to another, offers a promising strategy for combating antimicrobial resistance, yet predicting resultant evolutionary dynamics remains a significant challenge. We propose here a mathematical model that integrates fitness trade-offs and adaptive landscapes to predict the evolution of collateral sensitivity pathways, providing insights into optimizing sequential drug therapies. Our approach embeds collateral information into a network of switched systems, allowing us to abstract the effects of sequential antibiotic exposure on antimicrobial resistance. We analyze the system stability at disease-free equilibrium and employ set-control theory to tailor therapeutic windows. Consequently, we propose a computational algorithm to identify effective sequential therapies to counter antibiotic resistance. By leveraging our theory with data on collateral sensivity interactions, we predict scenarios that may prevent bacterial escape for chronic Pseudomonas aeruginosa infections.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。