Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei.

阅读:4
作者:Jones-Carson Jessica, Laughlin James R, Stewart Amanda L, Voskuil Martin I, Vázquez-Torres Andrés
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。