Extracellular polymeric substances (EPSs) are extracellular macromolecules in bacteria, which function in cell growth and show potential for mechanism study and biosynthesis application. However, the biosynthesis mechanism of EPS is still not clear. We herein chose Bacillus licheniformis CGMCC 2876 as a target strain to investigate the EPS biosynthesis. epsK, a member of eps cluster, the predicted polysaccharide synthesis cluster, was overexpressed and showed that the overexpression of epsK led to a 26.54% decrease in the production of EPS and resulted in slenderer cell shape. Transcriptome analysis combined with protein-protein interactions analysis and protein modeling revealed that epsK was likely responsible for the synthesis of teichuronic acid, a substitute cell wall component of teichoic acid when the strain was suffering phosphate limitation. Further cell cultivation showed that either phosphate limitation or the overexpression of teichuronic acid synthesis genes, tuaB and tuaE could similarly lead to EPS reduction. The enhanced production of teichuronic acid induced by epsK overexpression triggered the endogenous phosphate starvation, resulting in the decreased EPS synthesis and biomass, and the enhanced bacterial chemotaxis. This study presents an insight into the mechanism of EPS synthesis and offers the potential in controllable synthesis of target products.
Putative functions of EpsK in teichuronic acid synthesis and phosphate starvation in Bacillus licheniformis.
阅读:5
作者:Xu Yiyuan, Yang Lijie, Wang Haiyan, Wei Xiaoyu, Shi Yanyan, Liang Dafeng, Cao Mingfeng, He Ning
| 期刊: | Synthetic and Systems Biotechnology | 影响因子: | 4.400 |
| 时间: | 2022 | 起止号: | 2022 Apr 5; 7(2):815-823 |
| doi: | 10.1016/j.synbio.2022.04.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
