Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1-2.75 dyn/cm(2)) in a cone-and-plate viscometer for 1-120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, αMβ2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants.
Fluid shear stress increases neutrophil activation via platelet-activating factor.
阅读:8
作者:Mitchell Michael J, Lin Kimberly S, King Michael R
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2014 | 起止号: | 2014 May 20; 106(10):2243-53 |
| doi: | 10.1016/j.bpj.2014.04.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
