Formation and removal of 1,N6-dimethyladenosine in mammalian transfer RNA

哺乳动物转移 RNA 中 1,N6-二甲基腺苷的形成和去除

阅读:4
作者:Xue-Jiao You, Shan Zhang, Juan-Juan Chen, Feng Tang, Jingang He, Jie Wang, Chu-Bo Qi, Yu-Qi Feng, Bi-Feng Yuan

Abstract

RNA molecules harbor diverse modifications that play important regulatory roles in a variety of biological processes. Over 150 modifications have been identified in RNA molecules. N6-methyladenosine (m6A) and 1-methyladenosine (m1A) are prevalent modifications occurring in various RNA species of mammals. Apart from the single methylation of adenosine (m6A and m1A), dual methylation modification occurring in the nucleobase of adenosine, such as N6,N6-dimethyladenosine (m6,6A), also has been reported to be present in RNA of mammals. Whether there are other forms of dual methylation modification occurring in the nucleobase of adenosine other than m6,6A remains elusive. Here, we reported the existence of a novel adenosine dual methylation modification, i.e. 1,N6-dimethyladenosine (m1,6A), in tRNAs of living organisms. We confirmed that m1,6A is located at position 58 of tRNAs and is prevalent in mammalian cells and tissues. The measured level of m1,6A ranged from 0.0049% to 0.047% in tRNAs. Furthermore, we demonstrated that TRMT6/61A could catalyze the formation of m1,6A in tRNAs and m1,6A could be demethylated by ALKBH3. Collectively, the discovery of m1,6A expands the diversity of RNA modifications and may elicit a new tRNA modification-mediated gene regulation pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。