Light-induced hot carriers derived from the surface plasmons of metal nanostructures have been shown to be highly promising agents for photocatalysis. While both nonthermal and thermalized hot carriers can potentially contribute to this process, their specific role in any given chemical reaction has generally not been identified. Here, we report the observation that the H(2)-D(2) exchange reaction photocatalyzed by Cu nanoparticles is driven primarily by thermalized hot carriers. The external quantum yield shows an intriguing S-shaped intensity dependence and exceeds 100% for high light intensities, suggesting that hot carrier multiplication plays a role. A simplified model for the quantum yield of thermalized hot carriers reproduces the observed kinetic features of the reaction, validating our hypothesis of a thermalized hot carrier mechanism. A quantum mechanical study reveals that vibrational excitations of the surface Cu-H bond is the likely activation mechanism, further supporting the effectiveness of low-energy thermalized hot carriers in photocatalyzing this reaction.
Hot carrier multiplication in plasmonic photocatalysis.
阅读:7
作者:Zhou Linan, Lou Minhan, Bao Junwei Lucas, Zhang Chao, Liu Jun G, Martirez John Mark P, Tian Shu, Yuan Lin, Swearer Dayne F, Robatjazi Hossein, Carter Emily A, Nordlander Peter, Halas Naomi J
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2021 | 起止号: | 2021 May 18; 118(20):e2022109118 |
| doi: | 10.1073/pnas.2022109118 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
