Background
Low cellular level of BID is critical for viability of numerous cancer cells. Sensitization of cells to anticancer agents by BID overexpression from adenovirus or pcDNA vectors is a proposed strategy for cancer therapy; however it does not provide any stringent control of cellular level of BID. The
Conclusions
TAT-BID may be delivered to cancer cells in controlled manner and efficiently sensitizes PC3 and A549 cells to TRAIL. Therefore, it may be considered as a potential therapeutic agent that enhances the efficacy of TRAIL for the treatment of prostate and non-small human lung cancer.
Methods
Uptake of TAT-BID protein by cells was studied by quantitative Western blot analysis of cells extracts. Cells viability was monitored by MTT test. Apoptosis was detected by flow cytometry and cytochrome c release assay.
Results
TAT-BID was delivered to all cancer cells in amounts depending on time, dose and the cell line. Recombinant BID sensitized PC3 cells to TRAIL or, to lesser extent, to camptothecin. Out of remaining cells, TAT-BID sensitized A549, and only slightly HeLa cells to TRAIL. None of the latter cell lines were sensitized to camptothecin. In all cases the mutant not phosphorylable by CK2 (TAT-BIDT59AS76A) was similarly efficient in sensitization as the wild type TAT-BID. Conclusions: TAT-BID may be delivered to cancer cells in controlled manner and efficiently sensitizes PC3 and A549 cells to TRAIL. Therefore, it may be considered as a potential therapeutic agent that enhances the efficacy of TRAIL for the treatment of prostate and non-small human lung cancer.
