Interspecific variation and elevated CO(2) influence the relationship between plant chemical resistance and regrowth tolerance.

阅读:5
作者:Decker Leslie E, Hunter Mark D
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO(2) on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade-offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO(2) on four hypothesized trade-offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade-off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO(2) exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO(2.) In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO(2) in two out of four milkweed species. Finally, previous exposure to elevated CO(2) uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade-offs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。