Multifunctional magnetic nanoparticles for targeted delivery.

阅读:4
作者:Kumar Arun, Jena Prasanna K, Behera Sumita, Lockey Richard F, Mohapatra Subhra, Mohapatra Shyam
A major problem associated with drug therapy is the inability to deliver pharmaceuticals to a specific site of the body without causing nonspecific toxicity. Development of magnetic nanoparticles and techniques for their safe transport and concentration in specific sites in the body would constitute a powerful tool for gene/drug therapy in vivo. Furthermore, drug delivery in vitro could improve further if the drugs were modified with antibodies, proteins, or ligands. For in vivo experiments, magnetic nanoparticles were conjugated with plasmid DNA expressing enhanced green fluorescent protein (EGFP) and then coated with chitosan. These particles were injected into mice through the tail vein and directed to the heart and kidneys by means of external magnets of 25 gauss or 2kA-kA/m. These particles were concentrated in the lungs, heart, and kidneys of mice, and the expression of EGFP in these sites were monitored. The expression of EGFP in specific locations was visualized by whole-body fluorescent imaging, and the concentration of these particles in the designated body locations was confirmed by transmission electron microscopy. In another model system, we used atrial natriuretic peptide and carcinoembryonic antigen antibodies coupled to the chitosan-coated magnetic nanoparticles to target cells in vitro. The present work demonstrates that a simple external magnetic field is all that is necessary to target a drug to a specific site inside the body without the need to functionalize the nanoparticles. However, the option to use magnetic targeting with external magnets on functionalized nanoparticles could prove as a more efficient means of drug delivery. FROM THE CLINICAL EDITOR: This paper addresses targeted drug delivery with magnetic nanoparticles. The authors demonstrate that a simple external magnetic field is sufficient to target a drug to specific sites in the body without the need for functionalized nanoparticles, at least in selected organs and diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。