Microstructural Characterization of AlCrCuFeMnNi Complex Concentrated Alloy Prepared by Pressureless Sintering.

阅读:7
作者:Silva Tiago, Lopes Augusto
A significant and increasing number of studies have been dedicated to complex concentrated alloys (CCAs) due to the improved properties that these metallic materials can exhibit. However, while most of these studies employ melting techniques, only a few explore powder metallurgy and pressureless sintering as production methods. In this work, a microstructural characterization of AlCrCuFeMnNi CCA samples obtained by powder metallurgy and pressureless sintering using mixtures of powders with different compositions was carried out. One batch of samples (B1) was prepared using commercial powders of Al, Cr, Cu, Fe, Mn, and Ni. Another batch (B2) used mixtures of CrFeMn, AlNi, and Cu powders. A third set of samples (B3) was obtained by adding 1% at. of Mg to the B2 powder. The samples were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy dispersive spectroscopy, density measurements, and hardness tests. Thermodynamic calculations were also used to complement the microstructural characterization. All the obtained samples exhibited high relative density and hardness values. However, B3 samples showed a higher hardness, attributed to the finer distribution of oxide particles, which was promoted by the presence of Mg during sintering. These last samples presented a hardness/density ratio of 62 HV/(g cm(-3)), surpassing that of some martensitic stainless steels and nickel-titanium alloys.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。