Persistent inflammation results in an increase in the magnitude and duration of high K(+)-evoked Ca(2+) transients in putative nociceptive cutaneous dorsal root ganglion (DRG) neurons. The purpose of the present study was to determine whether recruitment of Ca(2+)-induced Ca(2+) release (CICR) contributes to these inflammation-induced changes. Acutely dissociated, retrogradely labeled cutaneous DRG neurons from naïve and complete Freund's adjuvant inflamed adult male Sprague-Dawley rats were studied with ratiometric microfluorimetry. Ryanodine only attenuated the duration but not magnitude of the high K(+)-evoked Ca(2+) transient in neurons from inflamed rats. However, there was no significant impact of inflammation on the potency or efficacy of ryanodine-induced block of the caffeine-evoked Ca(2+) transient, or the impact of sarco-endoplasmic reticulum ATPase (SERCA) inhibition on the high K(+)-evoked Ca(2+) transient. Furthermore, while there was no change in the magnitude, an inflammation-induced increase in the duration of the caffeine-evoked Ca(2+) transient was only observed with a prolonged caffeine application. In contrast to the high K(+)-evoked Ca(2+) transient, there was no evidence of direct mitochondrial involvement or that of the Ca(2+) extrusion mechanism, the Na(+)/Ca(2+) exchanger, on the caffeine-evoked Ca(2+) transient, and block of SERCA only increased the duration of this transient. These results indicate the presence of Ca(2+) regulatory domains in cutaneous nociceptive DRG neurons within which cytosolic Ca(2+) increased via influx and release are highly segregated. Furthermore, our results suggest that changes in neither CICR machinery nor the coupling between Ca(2+) influx and CICR are primarily responsible for the inflammation-induced changes in the evoked Ca(2+) transient.
Contribution of endoplasmic reticulum Ca2+ regulatory mechanisms to the inflammation-induced increase in the evoked Ca2+ transient in rat cutaneous dorsal root ganglion neurons.
阅读:9
作者:Scheff Nicole N, Lu Shao-Gang, Gold Michael S
| 期刊: | Cell Calcium | 影响因子: | 4.000 |
| 时间: | 2013 | 起止号: | 2013 Jul;54(1):46-56 |
| doi: | 10.1016/j.ceca.2013.04.002 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
