This paper presents an improved Teaching Learning Based Optimization (TLO) and a methodology for obtaining the edge maps of the noisy real life digital images. TLO is a population based algorithm that simulates the teaching-learning mechanism in class rooms, comprising two phases of teaching and learning. The 'Teaching Phase' represents learning from the teacher and 'Learning Phase' indicates learning by the interaction between learners. This paper introduces a third phase denoted by "Avoiding Phase" that helps to keep the learners away from the worst students with a view of exploring the problem space more effectively and escaping from the sub-optimal solutions. The improved TLO (ITLO) explores the solution space and provides the global best solution. The edge detection problem is formulated as an optimization problem and solved using the ITLO. The results of real life and medical images illustrate the performance of the developed method.
An improved teaching-learning based robust edge detection algorithm for noisy images.
阅读:8
作者:Thirumavalavan Sasirooba, Jayaraman Sasikala
| 期刊: | Journal of Advanced Research | 影响因子: | 13.000 |
| 时间: | 2016 | 起止号: | 2016 Nov;7(6):979-989 |
| doi: | 10.1016/j.jare.2016.04.002 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
