PEGylation strategy has been widely used to enhance colloidal stability of polycation/DNA nanoparticles (NPs) for gene delivery. To investigate the effect of polyethylene glycol (PEG) terminal groups on the transfection properties of these NPs, we synthesized DNA NPs using PEG-g-linear polyethyleneimine (lPEI) with PEG terminal groups containing alkyl chains of various lengths with or without a hydroxyl terminal group. For both alkyl- and hydroxyalkyl-decorated NPs with PEG grafting densities of 1.5, 3, or 5% on lPEI, the highest levels of transfection and uptake were consistently achieved at intermediate alkyl chain lengths of 3 to 6 carbons, where the transfection efficiency is significantly higher than that of nonfunctionalized lPEI/DNA NPs. Molecular dynamics simulations revealed that both alkyl- and hydroxyalkyl-decorated NPs with intermediate alkyl chain length exhibited more rapid engulfment than NPs with shorter or longer alkyl chains. This study identifies a new parameter for the engineering design of PEGylated DNA NPs.
Subtle changes in surface-tethered groups on PEGylated DNA nanoparticles significantly influence gene transfection and cellular uptake.
阅读:3
作者:Ke Xiyu, Wei Zonghui, Wang Ying, Shen Sabrina, Ren Yong, Williford John-Michael, Luijten Erik, Mao Hai-Quan
| 期刊: | Nanomedicine | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Jul;19:126-135 |
| doi: | 10.1016/j.nano.2019.04.004 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
