Tissue regeneration entails replenishing of damaged cells, appropriate cell differentiation and inclusion of regenerated cells into functioning tissues. In adult humans, the capacity of the injured spinal cord and muscle to self-repair is limited. In contrast, the amphibian larva can regenerate its tail after amputation with complete recovery of muscle, notochord and spinal cord. The cellular and molecular mechanisms underlying this phenomenon are still unclear. Here we show that upon injury muscle cell precursors exhibit Ca(2+) transients that depend on Ca(2+) release from ryanodine receptor-operated stores. Blockade of these transients impairs muscle regeneration. Furthermore, inhibiting Ca(2+) transients in the regenerating tail prevents the activation and proliferation of muscle satellite cells, which results in deficient muscle replenishment. These findings suggest that Ca(2+)-mediated activity is critical for the early stages of muscle regeneration, which may lead to developing effective therapies for tissue repair.
Spontaneous calcium transients manifest in the regenerating muscle and are necessary for skeletal muscle replenishment.
阅读:7
作者:Tu Michelle Kim, Borodinsky Laura Noemi
| 期刊: | Cell Calcium | 影响因子: | 4.000 |
| 时间: | 2014 | 起止号: | 2014 Jul;56(1):34-41 |
| doi: | 10.1016/j.ceca.2014.04.004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
