This comparative evaluation of neurotoxicants previously identified as models of chemical-induced mitochondrial dysfunction and energy deprivation demonstrated that subtoxic concentrations of 1,3-dinitrobenzene (1,3-DNB), 3-nitropropionic acid (3-NPA), and 3-chloropropanediol (3-CPD) each led to concentration-dependent loss of the mitochondrial membrane potential (ÎΨm) associated with similar patterns of protein carbonylation. Subtoxic concentrations of each neurotoxicant were determined by measuring DI TNC1 cell viability using the MTS cell proliferation assay. Although exposure 1 μM, 10 μM, and 100 μM concentrations of each toxicant did not result in loss of cell viability after 48 h, exposure to each toxicant at these concentrations led to concentration-dependent loss of tetramethyl rhodamine methyl ester (TMRM) fluorescence over the same exposure period. Preincubation with the antioxidant, deferoxamine, was effective in preventing loss of TMRM flurorescence. Through the combined use of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and Oxyblot analysis, this study demonstrated that exposure to each toxicant resulted in the formation of distinctly similar patterns of protein carbonylation comprised of specific proteins identified with tandem MS/MS. Our results provide insight as to how exposure to different neurotoxicants that enhance oxidative stress may, in fact, lead to mitochondrial injury and subsequent toxicity through selective, yet shared, pathways of protein modification by oxidative carbonylation.
A comparative study of protein carbonylation and mitochondrial dysfunction using the neurotoxicants 1,3-dinitrobenzene, 3-nitropropionic acid, and 3-chloropropanediol.
阅读:4
作者:Steiner Stephen R, Milton Evan, Philbert Martin A
| 期刊: | Neurotoxicology | 影响因子: | 3.900 |
| 时间: | 2013 | 起止号: | 2013 Jul;37:74-84 |
| doi: | 10.1016/j.neuro.2013.04.004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
