Analysis of gene expression in single cells allows for decomposition of cellular states as low-dimensional latent spaces. However, the interpretation and validation of these spaces remains a challenge. Here, we present scCoGAPS, which defines latent spaces from a source single-cell RNA-sequencing (scRNA-seq) dataset, and projectR, which evaluates these latent spaces in independent target datasets via transfer learning. Application of developing mouse retina to scRNA-Seq reveals intrinsic relationships across biological contexts and assays while avoiding batch effects and other technical features. We compare the dimensions learned in this source dataset to adult mouse retina, a time-course of human retinal development, select scRNA-seq datasets from developing brain, chromatin accessibility data, and a murine-cell type atlas to identify shared biological features. These tools lay the groundwork for exploratory analysis of scRNA-seq data via latent space representations, enabling a shift in how we compare and identify cells beyond reliance on marker genes or ensemble molecular identity.
Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species.
阅读:3
作者:Stein-O'Brien Genevieve L, Clark Brian S, Sherman Thomas, Zibetti Cristina, Hu Qiwen, Sealfon Rachel, Liu Sheng, Qian Jiang, Colantuoni Carlo, Blackshaw Seth, Goff Loyal A, Fertig Elana J
| 期刊: | Cell Systems | 影响因子: | 7.700 |
| 时间: | 2019 | 起止号: | 2019 May 22; 8(5):395-411 |
| doi: | 10.1016/j.cels.2019.04.004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
