Topology is the principal determinant in the folding of a complex all-alpha Greek key death domain from human FADD.

阅读:4
作者:Steward Annette, McDowell Gary S, Clarke Jane
In order to elucidate the relative importance of secondary structure and topology in determining folding mechanism, we have carried out a phi-value analysis of the death domain (DD) from human FADD. FADD DD is a 100 amino acid domain consisting of six anti-parallel alpha helices arranged in a Greek key structure. We asked how does the folding of this domain compare with that of (a) other all-alpha-helical proteins and (b) other Greek key proteins? Is the folding pathway determined mainly by secondary structure or is topology the principal determinant? Our Phi-value analysis reveals a striking resemblance to the all-beta Greek key immunoglobulin-like domains. Both fold via diffuse transition states and, importantly, long-range interactions between the four central elements of secondary structure are established in the transition state. The elements of secondary structure that are less tightly associated with the central core are less well packed in both cases. Topology appears to be the dominant factor in determining the pathway of folding in all Greek key domains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。