Characterization of a Knock-In Mouse Model with a Huntingtin Exon 1 Deletion

亨廷顿外显子 1 缺失的基因敲入小鼠模型的表征

阅读:7
作者:Elise M Braatz, Emily A André, Jeh-Ping Liu, Scott O Zeitlin

Background

The Huntingtin (HTT) N-terminal domains encoded by Huntingtin's (HTT) exon 1 consist of an N17 domain, the polyglutamine (polyQ) stretch and a proline-rich region (PRR). These domains are conserved in mammals and have been hypothesized to modulate HTT's functions in the developing and adult CNS, including DNA damage repair and autophagy.

Conclusion

Our results suggest that deletion of the Htt N-terminus encoded by the Htt exon 1 does not affect Htt's critical role during embryogenesis, but instead, may have a modest effect on certain motor tasks, basal levels of DNA damage in the brain, and Htt function in the testis.

Methods

Knock-in mice with a deletion of Htt exon 1 sequences (HttΔE1) were generated and bred into the C57BL/6J congenic genetic background. Their behavior, DNA damage response, basal autophagy, and glutamatergic synapse numbers were evaluated.

Objective

This study longitudinally characterizes the in vivo consequences of deleting the murine Htt N-terminal domains encoded by Htt exon 1.

Results

Progeny from HttΔE1/+ intercrosses are born at the expected Mendelian frequency but with a distorted male to female ratio in both the HttΔE1/ΔE1 and Htt+/+ offspring. HttΔE1/ΔE1 adults exhibit a modest deficit in accelerating rotarod performance, and an earlier increase in cortical and striatal DNA damage with elevated neuronal pan-nuclear 53bp1 levels compared to Htt+/+ mice. However, a normal response to induced DNA damage, normal levels of basal autophagy markers, and no significant differences in corticocortical, corticostriatal, thalamocortical, or thalamostriatal synapses numbers were observed compared to controls.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。