We describe a new chronological lifespan (CLS) assay for the yeast Schizosaccharomyces pombe. Yeast CLS assays monitor the loss of cell viability in a culture over time, and this new assay shows a continuous decline in viability without detectable regrowth until all cells in the culture are dead. Thus, the survival curve is not altered by the generation of mutants that can grow during the experiments, and one can monitor the entire lifespan of a strain until the number of viable cells has decreased over 10(6)-fold. This CLS assay recapitulates the evolutionarily conserved features of lifespan shortening by over nutrition, lifespan extension by caloric restriction, increased stress resistance of calorically restricted cells and lifespan control by the AKT kinases. Both S. pombe AKT kinase orthologs regulate CLS: loss of sck1(+) extended lifespan in over nutrition conditions, loss of sck2(+) extended lifespan under both normal and over nutrition conditions, and loss of both genes showed that sck1(+) and sck2(+) control different longevity pathways. The longest-lived S. pombe cells showed the most efficient cell cycle exit, demonstrating that caloric restriction links these two processes. This new S. pombe CLS assay will provide a valuable tool for aging research.
A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity.
阅读:3
作者:Chen Bo-Ruei, Runge Kurt W
| 期刊: | Experimental Gerontology | 影响因子: | 4.300 |
| 时间: | 2009 | 起止号: | 2009 Aug;44(8):493-502 |
| doi: | 10.1016/j.exger.2009.04.004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
