Biofilm-related infections remain a major concern in clinical settings due to the increasing challenge of antimicrobial resistance to conventional antimicrobial treatments. Surface coatings of nanomaterials that can effectively prevent biofilm formation and disrupt established biofilms are essential to addressing this challenge. In this study, a ZnO-Ag nanocomposite was synthesized via a dry chemical method and characterized using XRD, XPS, TEM, SEM-EDX, and AFM, confirming the presence of highly crystalline and pure ZnO and Ag nanoparticles with sharp nanoscale features. The nanocomposite demonstrated potent antibiofilm activity against Pseudomonas aeruginosa, a common Gram-negative biofilm-forming pathogen. Surface-coated glass slides prevented initial biofilm formation, while treatment with higher nanocomposite concentrations (⥠0.25 g/L) significantly disrupted pre-formed biofilms and altered biofilm architecture, as shown by SEM and crystal violet assays. Mechanistic investigations suggested that nanoparticle surface sharpness may contribute to membrane disruption, and EPR analysis confirmed the generation of reactive oxygen species (ROS), particularly superoxide and methyl radicals, under light exposure. These results highlight the composite's strong potential for integration into surfaces prone to bacterial colonization, offering a practical approach for reducing biofilm-related complications.
Antibiofilm activity of ZnO-Ag nanoparticles against Pseudomonas aeruginosa.
阅读:4
作者:Alhosani Fatima, Islayem Deema, Almansoori Shamma, Zaka Awais, Nayfeh Laith, Rezk Ayman, Yousef Ahmed F, Pappa Anna Maria, Nayfeh Ammar
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 19; 15(1):17321 |
| doi: | 10.1038/s41598-025-02372-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
