Integrating spatial mapping and metabolomics: A novel platform for bioactive compound discovery and saline land reclamation.

阅读:3
作者:Andriyas Tushar, Leksungnoen Nisa, Pongchaidacha Pichaya, Uthairangsee Arashaporn, Uthairatsamee Suwimon, Doomnil Peerapat, Ku-Or Yongkriat, Ngernsaengsaruay Chatchai, Andriyas Sanyogita, Yarnvudhi Arerut, Tansawat Rossarin
Saline lands pose significant environmental and agricultural challenges due to high soil salinity, which disrupts water uptake and ionic balances, limiting conventional crop productivity. Yet, certain endemic plants thrive under these conditions and may offer untapped bioactive compounds. This study proposes a novel platform that integrates species distribution modeling (SDM) and advanced metabolomics to screen for bioactive secondary metabolites, using Buchanania siamensis, a rare native species, as a case study. An ensemble SDM model incorporating environmental and soil parameters identified salinity as a critical factor influencing the species' distribution. Leaf samples were collected from naturally growing trees at both saline (SS) and non-saline (NS) sites. LC-QTOF metabolomic analysis annotated a total of 1106 metabolites across the leaf samples, with 175 found to be significantly different between the groups. Among them, 108 metabolites exhibited higher abundance in the SS group. Additionally, antioxidant assays including DPPH, FRAP, and total phenolic content tests, were conducted. Data were further analyzed using O-PLSR models to identify key metabolites most relevant to antioxidant properties. The results indicated that afzelin was the key metabolite responsible for the antioxidant properties of B. siamensis, with significantly higher levels in SS compared to NS samples (p < 0.05), as determined by peak area. By leveraging this multidisciplinary approach, we propose a framework to support both bioactive compound discovery and saline land reclamation, offering potential environmental and pharmaceutical benefits. This integrated platform may support pharmaceutical research, particularly in drug discovery efforts.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。