Novel Quasi-Liquid K-Na Alloy as a Promising Dendrite-Free Anode for Rechargeable Potassium Metal Batteries.

阅读:4
作者:Tai Zhixin, Li Yi, Liu Yajie, Zhao Lanling, Ding Yu, Lu Ziyu, Peng Zhijian, Meng Lijian, Yu Guihua, Liu Lifeng
Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel "quasi-liquid" potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding electrochemical performance able to be reversibly cycled at 4 mA cm(-2) for 2000 h. Moreover, it is demonstrated that adding a small amount of sodium hexafluorophosphate (NaPF(6) ) into the potassium bis(fluorosulfonyl)imide electrolyte allows for the formation of the "quasi-liquid" KNA on electrode surface. Comprehensive experimental studies reveal the formation of an unusual metastable KNa(2) phase during plating, which is believed to facilitate simultaneous nucleation and suppress the growth of dendrites, thereby improving the electrode's cycle lifetime. The "quasi-liquid" KNA-3.5 anode demonstrates markedly enhanced electrochemical performance in a full cell when pairing with Prussian blue analogs or sodium rhodizonate dibasic as the cathode material, compared to the pristine potassium anode. Importantly, unlike the liquid KNA reported before, the "quasi-liquid" KNA-3.5 exhibits good processability and can be readily shaped into sheet electrodes, showing substantial promise as a dendrite-free anode in rechargeable potassium metal batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。