OBJECTIVES: This paper reports the development, validation, and public availability of a new neural network-based system which attempts to identify the manufacturer and even the model group of a pacemaker or defibrillator from a chest radiograph. BACKGROUND: Medical staff often need to determine the model of a pacemaker or defibrillator (cardiac rhythm device) quickly and accurately. Current approaches involve comparing a device's radiographic appearance with a manual flow chart. METHODS: In this study, radiographic images of 1,676 devices, comprising 45 models from 5 manufacturers were extracted. A convolutional neural network was developed to classify the images, using a training set of 1,451 images. The testing set contained an additional 225 images consisting of 5 examples of each model. The network's ability to identify the manufacturer of a device was compared with that of cardiologists, using a published flowchart. RESULTS: The neural network was 99.6% (95% confidence interval [CI]: 97.5% to 100.0%) accurate in identifying the manufacturer of a device from a radiograph and 96.4% (95% CI: 93.1% to 98.5%) accurate in identifying the model group. Among 5 cardiologists who used the flowchart, median identification of manufacturer accuracy was 72.0% (range 62.2% to 88.9%), and model group identification was not possible. The network's ability to identify the manufacturer of the devices was significantly superior to that of all the cardiologists (p < 0.0001 compared with the median human identification; p < 0.0001 compared with the best human identification). CONCLUSIONS: A neural network can accurately identify the manufacturer and even model group of a cardiac rhythm device from a radiograph and exceeds human performance. This system may speed up the diagnosis and treatment of patients with cardiac rhythm devices, and it is publicly accessible online.
Cardiac Rhythm Device Identification Using Neural Networks.
阅读:9
作者:Howard James P, Fisher Louis, Shun-Shin Matthew J, Keene Daniel, Arnold Ahran D, Ahmad Yousif, Cook Christopher M, Moon James C, Manisty Charlotte H, Whinnett Zach I, Cole Graham D, Rueckert Daniel, Francis Darrel P
| 期刊: | Jacc-Clinical Electrophysiology | 影响因子: | 7.700 |
| 时间: | 2019 | 起止号: | 2019 May;5(5):576-586 |
| doi: | 10.1016/j.jacep.2019.02.003 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
