Log-transformation of Independent Variables: Must We?

阅读:4
作者:Choi Giehae, Buckley Jessie P, Kuiper Jordan R, Keil Alexander P
Epidemiologic studies often quantify exposure using biomarkers, which commonly have statistically skewed distributions. Although normality assumption is not required if the biomarker is used as an independent variable in linear regression, it has become common practice to log-transform the biomarker concentrations. This transformation can be motivated by concerns for nonlinear dose-response relationship or outliers; however, such transformation may not always reduce bias. In this study, we evaluated the validity of motivations underlying the decision to log-transform an independent variable using simulations, considering eight scenarios that can give rise to skewed X and normal Y. Our simulation study demonstrates that (1) if the skewness of exposure did not arise from a biasing factor (e.g., measurement error), the analytic approach with the best overall model fit best reflected the underlying outcome generating methods and was least biased, regardless of the skewness of X and (2) all estimates were biased if the skewness of exposure was a consequence of a biasing factor. We additionally illustrate a process to determine whether the transformation of an independent variable is needed using NHANES. Our study and suggestion to divorce the shape of the exposure distribution from the decision to log-transform it may aid researchers in planning for analysis using biomarkers or other skewed independent variables.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。