Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds' internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory.
High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography.
阅读:5
作者:Hagen Charlotte K, Maghsoudlou Panagiotis, Totonelli Giorgia, Diemoz Paul C, Endrizzi Marco, Rigon Luigi, Menk Ralf-Hendrik, Arfelli Fulvia, Dreossi Diego, Brun Emmanuel, Coan Paola, Bravin Alberto, De Coppi Paolo, Olivo Alessandro
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2015 | 起止号: | 2015 Dec 14; 5:18156 |
| doi: | 10.1038/srep18156 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
