Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition

外泌体 miR-1255b-5p 靶向结直肠癌细胞中的人类端粒酶逆转录酶,从而抑制上皮间质转化。

阅读:2
作者:Xue Zhang ,Jian Bai ,Hang Yin ,Long Long ,Zhewen Zheng ,Qingqing Wang ,Fengxia Chen ,Xiaoyan Yu ,Yunfeng Zhou

Abstract

Cancer cells undergo epithelial-to-mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underlying mechanisms remain unclear. We identified a targeting relationship between tumor-suppressing miR-1255b-5p and human telomerase reverse transcriptase (hTERT) via clinical screening of serum samples in colorectal cancer (CRC) patients. EMT suppression via exosomal miR-1255b-5p delivery was investigated by assessing hTERT expression, Wnt/β-catenin signaling, and telomerase activity. We revealed that hypoxia directly affected exosomal miR-1255b-5p content, the delivery of which between CRC cells significantly impacted cell invasion, EMT-related protein expression, and telomerase stability. Specifically, miR-1255b-5p suppressed EMT by inhibiting Wnt/β-catenin activation via hTERT inhibition. Hypoxia reduced exosomal miR-1255b-5p secretion by CRC cells, thereby increasing hTERT expression to enhance EMT and telomerase activity. In a mouse CRC model, hypoxic exosomes containing overexpressed miR-1255b-5p attenuated EMT, tumor progression, and liver metastasis. Our results suggest the antitumor role of miR-1255b-5p and its involvement in the regulation of hTERT-mediated EMT. We propose that miRNA-targeted regulation of telomerase is a promising therapeutic strategy for future CRC treatment. Keywords: epithelia-to-mesenchymal transition; exosome; hTERT; microRNA; microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。