In Vitro and In Silico Vibrational-Rotational Spectroscopic Characterization of the Next-Generation Refrigerant HFO-1123.

阅读:10
作者:Tasinato Nicola, Pietropolli Charmet Andrea, Ceselin Giorgia, Salta Zoi, Stoppa Paolo
Very short-lived substances have recently been proposed as replacements for hydrofluorocarbons (HFCs), in turn being used in place of ozone-depleting substances, in refrigerant applications. In this respect, hydro-fluoro-olefins (HFOs) are attracting particular interest because, due to their reduced global warming potential, they are supposed to be environmentally friendlier. Notwithstanding this feature, they represent a new class of compounds whose spectroscopic properties and reactivity need to be characterized to allow their atmospheric monitoring and to understand their environmental fate. In the present work, the structural, vibrational, and ro-vibrational properties of trifluorothene (HFO-1123, F(2)C = CHF) are studied by state-of-the-art quantum chemical calculations. The equilibrium molecular structure has an expected error within 2 mà and 0.2° for bond lengths and angles, respectively. This represents the first step toward the computation of highly accurate rotational constants for both the ground and first excited fundamental vibrational levels, which reproduce the available experimental data well within 0.1%. Centrifugal distortion parameters and vibrational-rotational coupling terms are computed as well and used to solve some conflicting experimental results. Simulation of the vibrational transition frequencies and intensities beyond the double harmonic approximation and up to three quanta of vibrational excitation provides insights into the couplings ruling the vibrational dynamics and guides the characterization of the gas-phase infrared spectrum experimentally recorded in the range of 200-5000 cm(-1). The full characterization of the IR features is completed with the experimental determination of the absorption cross sections over the 400-5000 cm(-1) region from which the radiative forcing and global warming potential of HFO-1123 are derived.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。