Intramembrane electrostatic interactions destabilize lipid vesicles.

阅读:3
作者:Shoemaker Scott D, Vanderlick T Kyle
Membrane stability is of central concern in many biology and biotechnology processes. It has been suggested that intramembrane electrostatic interactions play a key role in membrane stability. However, due primarily to a lack of supporting experimental evidence, they are not commonly considered in mechanical analyses of lipid membranes. In this paper, we use the micropipette aspiration technique to characterize the elastic moduli and critical tensions of lipid vesicles with varying surface charge. Charge was induced by doping neutral phosphatidylcholine vesicles with anionic lipids phosphatidylglycerol and phosphatidic acid. Measurements were taken in potassium chloride (moderate ion-lipid binding) and tetramethylammonium chloride (low ion-lipid binding) solutions. We show that inclusion of anionic lipid does not appreciably alter the areal dilation elasticity of lipid vesicles. However, the tension required for vesicle rupture decreases with increasing anionic lipid fraction and is a function of electrolyte composition. Using vesicles with 30% charged (i.e., unbound) anionic lipid, we measured critical tension reductions of 75%, demonstrating the important role of electrostatic interactions in membrane stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。