The influence of structural changes of an abasic site in duplex DNA on noncovalent and site-directed spin labeling (NC-SDSL) of the spin label ç were examined with electron paramagnetic resonance (EPR) spectroscopy. The binding affinities of ç to sixteen different DNA duplexes containing all possible sequences immediately flanking the abasic site were determined and the results showed that the binding of ç is highly flanking-sequence dependent. In general, a 5'-dG nucleotide favors the binding of the spin label. In particular, 5'-d(G__T) was the best binding sequence whereas 5'-d(C__T) showed the lowest affinity. Changing the structure of the abasic site linker from a tetrahydrofuran analog (F) to the anucleosidic C(3)-spacer (C(3)) does not appreciably affect the binding of ç to the abasic site. For efficient binding of ç, the abasic site needs to be located at least four base pairs away from the duplex end. Introducing a methyl substituent at N3 of ç did not change the binding affinity, but a decreased binding was observed for both N3-ethyl and -propyl groups. These results will guide the design of abasic site receptors and spin label ligands for NC-SDSL of nucleic acids.
Structural changes of an abasic site in duplex DNA affect noncovalent binding of the spin label ç.
阅读:3
作者:Shelke Sandip A, Sigurdsson Snorri Th
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2012 | 起止号: | 2012 Apr;40(8):3732-40 |
| doi: | 10.1093/nar/gkr1210 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
