The proton-coupled folate transporter (PCFT-SLC46A1) mediates intestinal folate absorption and folate transport across the choroid plexus, processes defective in hereditary folate malabsorption (HFM). This paper characterizes the functional defect, and the roles of two mutated PCFT residues, associated with HFM (G338R and A335D). The A335D-PCFT and other mutations at this residue result in an unstable protein; when expression of a mutant protein was preserved, function was always retained. The G338R and other charged mutants resulted in an unstable protein; substitutions with small neutral and polar amino acids preserved protein but with impaired function. Pemetrexed and methotrexate (MTX) influx kinetics mediated by the G338C mutant PCFT revealed marked (15- to 20-fold) decreases in K(t) and V(max) compared with wild-type PCFT. In contrast, there was only a small (â¼2-fold) decrease in the MTX influx K(i) and an increase (â¼3-fold) in the pemetrexed influx K(i) for the G338C-PCFT mutant. Neither a decrease in pH to 4.5, nor an increase to 7.4, restored function of the G338C mutant relative to wild-type PCFT excluding a role for this residue in proton binding or proton coupling. Homology modeling localized the A335 and G338 residues embedded in the 9th transmembrane, consistent with the inaccessibility of the A335C and G338C proteins to MTS reagents. Hence, the loss of intrinsic G338C-PCFT function was due solely to impaired oscillation of the carrier between its conformational states. The data illustrate how alterations in carrier cycling can impact influx K(t) without comparable alterations in substrate binding to the carrier.
Functional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption.
阅读:3
作者:Shin Daniel Sanghoon, Zhao Rongbao, Fiser Andras, Goldman David I
| 期刊: | American Journal of Physiology-Cell Physiology | 影响因子: | 4.700 |
| 时间: | 2012 | 起止号: | 2012 Oct 15; 303(8):C834-42 |
| doi: | 10.1152/ajpcell.00171.2012 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
