Background: Hydrophilic compounds, such as amino acids, organic acids and sugars, among others, are present in large amounts in plant cells. The analysis and quantification of these major hydrophilic compounds are particularly relevant in plant science because they have a considerable impact on the quality of plant-derived products and on plant-pathogen relationships. Our objective was to develop and validate a complete analysis workflow combining a water-based extraction procedure with a fast separation using hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry (HILIC-HRMS) for quantitative analysis of hydrophilic compounds in plant tissues. Results: Water-based microwave-assisted extraction (MAE) methods for hydrophilic compounds were compared using HILIC-HRMS. The newly developed method involved 20 s MAE time followed by a 10 min HILIC-HRMS analysis. This bioanalytical method was validated for 24 polar metabolites, including amino acids, organic acids, and sugars, to ensure the reliability of analytical results: selectivity, limits of detection and quantification, calibration range and precision. Depending on the compounds, quantification limit was as low as 0.10 µM up to 4.50 µM. Between-run RSDs evaluated on Vitis vinifera and Arabidopsis samples were all below 20% except for three compounds. Conclusions: A water-based MAE method, coupled with HILIC-HRMS, was developed for the absolute quantification of free amino acids, organic acids, and sugars in plant tissues. Its effectiveness was demonstrated in both lignified plants, such as Vitis vinifera, and non-lignified plants, such as Arabidopsis. This method is suitable for medium- to high-throughput analysis of key polar metabolites from small amounts of plant material.
Green Extraction Method: Microwave-Assisted Water Extraction Followed by HILIC-HRMS Analysis to Quantify Hydrophilic Compounds in Plants.
阅读:4
作者:Louis Alexandra, Chich Jean François, Chepca Hadrien, Schmitz Isabelle, Hugueney Philippe, Maia-Grondard Alessandra
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 25; 15(4):223 |
| doi: | 10.3390/metabo15040223 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
