Associations between maternal genotypes and metabolites implicated in congenital heart defects.

阅读:7
作者:Chowdhury Shimul, Hobbs Charlotte A, MacLeod Stewart L, Cleves Mario A, Melnyk Stepan, James S Jill, Hu Ping, Erickson Stephen W
BACKGROUND: The development of non-syndromic congenital heart defects (CHDs) involves a complex interplay of genetics, metabolism, and lifestyle. Previous studies have implicated maternal single nucleotide polymorphisms (SNPs) and altered metabolism in folate-related pathways as CHD risk factors. OBJECTIVE: We sought to discover associations between maternal SNPs and metabolites involved in the homocysteine, folate, and transsulfuration pathways, and determine if these associations differ between CHD cases and controls. DESIGN: Genetic, metabolic, demographic, and lifestyle information was available for 335 mothers with CHD-affected pregnancies and 263 mothers with unaffected pregnancies. Analysis was conducted on 1160 SNPs, 13 plasma metabolites, and 2 metabolite ratios. A two-stage multiple linear regression was fitted to each combination of SNP and metabolite/ratio. RESULTS: We identified 4 SNPs in the methionine adenosyltransferase II alpha (MAT2A) gene that were associated with methionine levels. Three SNPs in tRNA aspartic acid methyltransferase 1 (TRDMT1) gene were associated with total plasma folate levels. Glutamylcysteine (GluCys) levels were associated with multiple SNPs within the glutathione peroxidase 6 (GPX6) and O-6-methylguanine-DNA methyltransferase (MGMT) genes. The regression model revealed interactions between genotype and case-control status in the association of total plasma folate, total glutathione (GSH), and free GSH, to SNPs within the MGMT, 5,10-methenyltetrahydrofolate synthetase (MTHFS), and catalase (CAT) genes, respectively. CONCLUSIONS: Our study provides further evidence that genetic variation within folate-related pathways accounts for inter-individual variability in key metabolites. We identified specific SNP-metabolite relationships that differed in mothers with CHD-affected pregnancies, compared to controls. Our results underscore the importance of multifactorial studies to define maternal CHD risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。