In this paper, we present a repetitive sampling method to construct control charts using exponentially weighted moving averages (EWMA) and double exponentially weighted moving averages (DEWMA) to monitor shift in the process. For non-normal processes, t-distribution with various degrees of freedom (i.e. df = 4, 10, 20, 40, 50 ) is used as symmetric distribution, gamma distribution with unit scale parameter and various shape parameters (i.e. 0.5, 1, 2, 3, 4 ) is used as positively skewed distribution and Weibull distribution with unit scale parameter and various shape parameters (i.e. 10 and 20) is used as negatively skewed distribution. We use Monte Carlo simulations to check whether the process is out of control. We use average run length as a tool to find the ability of proposed control charts to identify a shift earlier in a process, as compared to other control charts currently used to monitor the same type of process. The proposed control charts are applied to two real datasets.
EWMA and DEWMA repetitive control charts under non-normal processes.
阅读:4
作者:Nawaz Muhammad Shujaat, Azam Muhammad, Aslam Muhammad
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2020 Jan 4; 48(1):4-40 |
| doi: | 10.1080/02664763.2019.1709809 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
