PAFE: A lightweight visualization-based fast malware classification method.

阅读:7
作者:Li Sicong, Wang Jian, Wang Shuo, Song Yafei
With the development of automated malware toolkits, cybersecurity faces evolving threats. Although visualization-based malware analysis has proven to be an effective method, existing approaches struggle with challenging malware samples due to alterations in the texture features of binary images during the visualization preprocessing stage, resulting in poor performance. Furthermore, to enhance classification accuracy, existing methods sacrifice prediction time by designing deeper neural network architectures. This paper proposes PAFE, a lightweight and visualization-based rapid malware classification method. It addresses the issue of texture feature variations in preprocessing through pixel-filling techniques and applies data augmentation to overcome the challenges of class imbalance in small sample datasets. PAFE combines multi-scale feature fusion and a channel attention mechanism, enhancing feature expression through modular design. Extensive experimental results demonstrate that PAFE outperforms the current state-of-the-art methods in both efficiency and effectiveness for malware variant classification, achieving an accuracy rate of 99.25 % with a prediction time of 10.04 ms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。