This study conducted integrated experiments and computational modeling to investigate the speeds of a developing shock within granular salt and analyzed the effect of various impact velocities up to 245 m/s. Experiments were conducted on table salt utilizing a novel setup with a considerable bore length for the sample, enabling visualization of a moving shock wave. Experimental analysis using particle image velocimetry enabled the characterization of shock velocity and particle velocity histories. Mesoscale simulations further enabled advanced analysis of the shock wave's substructure. In simulations, the shock front's precursor was shown to have a heterogeneous nature, which is usually modeled as uniform in continuum analyses. The presence of force chains results in a spread out of the shock precursor over a greater ramp distance. With increasing impact velocity, the shock front thickness reduces, and the precursor of the shock front becomes less heterogeneous. Furthermore, mesoscale modeling suggests the formation of force chains behind the shock front, even under the conditions of weak shock. This study presents novel mesoscale simulation results on salt corroborated with data from experiments, thereby characterizing the compaction front speeds in the weak shock regime.
Weak shock compaction on granular salt.
阅读:4
作者:Seo Dawa, Heatwole Eric M, Feagin Trevor A, Lopez-Pulliam Ian D, Luscher Darby J, Koskelo Aaron, Kenamond Mack, Rousculp Christopher, Ticknor Christopher, Scovel Christina, Daphalapurkar Nitin P
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jul 19; 14(1):16695 |
| doi: | 10.1038/s41598-024-67652-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
