Association between blood flow and inflammatory state in a T-cell transfer model of inflammatory bowel disease in mice

小鼠炎症性肠病 T 细胞转移模型中血流与炎症状态的关系

阅读:9
作者:Norman R Harris, Patsy R Carter, Seungjun Lee, Megan N Watts, Songlin Zhang, Matthew B Grisham

Background

Adoptive transfer of naive T-lymphocyte subsets into lymphopenic mice initiates chronic gut inflammation that mimics several aspects of inflammatory bowel disease (IBD). Patients with IBD can have profound alterations in intestinal blood flow, but whether the same is true in the T-cell transfer model has yet to be determined.

Conclusions

In this model of chronic intestinal inflammation, mild inflammation was associated with significant decreases in blood flow.

Methods

In the current study, chronic intestinal inflammation was induced in recombinase-activating gene-1-deficient (RAG(-/-)) mice by adoptive transfer of CD4(+) T-lymphocytes obtained from interleukin-10 deficient (IL-10(-/-)) mice.

Results

Four weeks later, widespread colonic inflammation was observed in the reconstituted recipients, in contrast to 2 control sets of mice injected with a different subset of lymphocytes or with vehicle alone. We observed that the resulting pathology induced in the reconstituted RAG(-/-) mice was divided distinctly into 2 subsets: 1 with blood flow near normal with very high inflammation scores, and the other with severely attenuated blood flow but with much lower signs of inflammation. Colonic and ileal blood flow rates in the latter subset of CD4(+) mice averaged only approximately 30% compared to the mice with higher inflammation scores. The lower blood flow rates were associated with greatly reduced red blood cell concentrations in the tissue, suggesting a possible loss of vascular density. Conclusions: In this model of chronic intestinal inflammation, mild inflammation was associated with significant decreases in blood flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。