HBV X Protein Induces Degradation of UBXN7, a Novel Negative Regulator of NF-κB Signaling, to Promote HBV Replication

HBV X 蛋白诱导 NF-κB 信号新型负调节因子 UBXN7 降解,从而促进 HBV 复制

阅读:9
作者:Sen Yuan, Jiaqi Xu, Min Wang, Junsong Huang, Shuangshuang Ma, Yang Liu, Yujia Ke, Xianhuang Zeng, Kangwei Wu, Jingwen Wang, Xuezhang Tian, Dandan Zheng, Tanzeel Yousaf, Wajeeha Naz, Junwei Sun, Lang Chen, Deyin Guo, Mingxiong Guo, Guihong Sun

Abstract

Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma. However, the function and mechanism of the effect of HBV on host protein ubiquitination remain largely unknown. We aimed at characterizing whether and how HBV promotes self-replication by affecting host protein ubiquitination. In this study, we identified UBXN7, a novel inhibitor for nuclear factor kappa B (NF-κB) signaling, was degraded via interaction with HBV X protein (HBx) to activate NF-κB signaling and autophagy, thereby affecting HBV replication. The expression of UBXN7 was analyzed by Western blot and quantitative reverse transcription polymerase chain reaction in HBV-transfected hepatoma cells and HBV-infected primary human hepatocytes (PHHs). The effects of UBXN7 on HBV replication were analyzed by using in vitro and in vivo assays, including stable isotope labeling by amino acids in cell culture (SILAC) analysis. Changes in HBV replication and the associated molecular mechanisms were analyzed in hepatoma cell lines. SILAC analyses showed that the ubiquitination of UBXN7 was significantly increased in HepG2.2.15 cells compared with control cells. After HBV infection, HBx protein interacted with UBXN7 to promote K48-linked ubiquitination of UBXN7 at K99, leading to UBXN7 degradation. On the other hand, UBXN7 interacted with the ULK domain of IκB kinase β through its ubiquitin-associating domain to facilitate its degradation. This in turn reduced NF-κB signaling, leading to reduced autophagy and consequently decreased HBV replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。