Integrating green analytical chemistry and analytical quality by design: an innovative approach for RP-UPLC method development of ensifentrine in bulk and inhalation formulations.

阅读:7
作者:Vanga Mohan Goud, Bukke Sarad Pawar Naik, Kusuma Praveen Kumar, Narapureddy Bayapa Reddy, Thalluri Chandrashekar
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a significant global health issue, worsened by pollution and modernisation. Ensifentrine (EFT), a new dual inhibitor of phosphodiesterase PDE3 and PDE4, is being developed for inhalation to target airway inflammation, bronchodilation, and ciliary function in COPD treatment. OBJECTIVE: This study aims to develop and validate a new quantification method for Ensifentrine, as no previous techniques are available, by integrating analytical quality-by-design (AQbD) and green analytical chemistry (GAC) principles. METHODS: An AQbD framework, utilizing Design-expert(®) software and a central composite design, optimized the RP-UPLC method. The optimized conditions involved isocratic separation on an ACQUITY UPLC HSS C18 SB column at ambient temperature, with a mobile phase of 0.01 N KH(2)PO(4) (pH 5.4) and acetonitrile (66.4:33.6 v/v), a flow rate of 0.27 mL/min, and PDA detection at 272.0 nm. RESULTS: The statistical analysis confirmed the model's significance and normal distribution. The method, validated according to ICH guidelines, showed good linearity (r(2) = 0.9997) over a range of 3.75-22.5 μg/mL, with an LOD of 3.3 μg/mL and LOQ of 10 μg/mL. It was successfully applied to bulk materials and pharmaceutical formulations with statistical comparisons. GREEN CHEMISTRY ASSESSMENT: The greenness of the developed method was evaluated using tools such as ComplexMoGAPI, AGREE, BAGI, Green certificate-modified Eco-scale, and ChlorTox Scale. Additionally, the EVG method evaluation tool was also used to assess environmental impact, with the results shown in a radar chart. CONCLUSION: This study presents a sensitive and robust RP-UPLC method for quantifying Ensifentrine, combining AQbD and GAC principles. The method, validated according to ICH guidelines, also ensures environmental sustainability. This approach sets a precedent for future analytical method development in pharmaceutical sciences with a focus on sustainability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。