The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.
Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation.
阅读:3
作者:Pang Chao-You, Wang Hui, Pang Yu, Xu Chao, Jiao Yue, Qin Yong-Mei, Western Tamara L, Yu Shu-Xun, Zhu Yu-Xian
| 期刊: | Molecular & Cellular Proteomics | 影响因子: | 5.500 |
| 时间: | 2010 | 起止号: | 2010 Sep;9(9):2019-33 |
| doi: | 10.1074/mcp.M110.000349 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
