Monitoring caspase-3 activation with a multimodality imaging sensor in living subjects.

阅读:3
作者:Ray Pritha, De Abhijit, Patel Manishkumar, Gambhir Sanjiv Sam
PURPOSE: Capsase-3 plays an important role in chemotherapy-induced apoptosis in many cancers. Herein, we applied a multimodality reporter vector to monitor caspase-3 activation indirectly in live cells and tumors of living animals undergoing apoptosis. EXPERIMENTAL DESIGN: A fusion protein (MTF) was constructed by combining three different reporter proteins, red fluorescent protein (mRFP1), firefly luciferase (FL), and HSV1-sr39 truncated thymidine kinase (TK), linked through a caspase-3 recognizable polypeptide linker. After cleavage by caspase-3, a significant gain in mRFP1, FL, and TK activity are observed by fluorescence-activated cell sorting and enzyme-based assays. A melanoma cell line (B16F10-mtf-hrl) stably expressing mtf (to measure caspase-3 activation) and hrl-IRES-gfp (to determine the decrease in a number of viable cells) vectors was generated to measure two independent molecular events upon treatment. RESULTS: Upon induction with 8 mumol/L staurosporine, the fusion protein showed a 2.8-fold increase in FL (P = 0.03), a 1.5-fold increase in TK (P = not significant), and a 2-fold increase in mRFP1 (P = 0.05) activity in 293T cells. Bioluminescence and micropositron emission tomography imaging of the apoptotic B16F10-mtf-hrl tumors showed a 2-fold higher FL activity (897 versus 416) and a 2-fold higher TK activity (10.3 versus 3.87) than control tumors when normalized with RL activity. Using a similar normalization approach, the time kinetics of caspase-3 activation by two protein kinase-C inhibitors was noninvasively monitored in living mice. CONCLUSION: This multimodality caspase sensor vector could effectively and noninvasively monitor caspase-3 activation from single live cells to a multicellular tumor environment and, thus, would be a valuable tool for drug screening in preclinical models and future patient cell based therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。