Binding of a fluorescent lipid amphiphile to albumin and its transfer to lipid bilayer membranes.

阅读:7
作者:Abreu Magda S C, Estronca Luís M B B, Moreno Maria João, Vaz Winchil L C
Kinetics and thermodynamics of the binding of a fluorescent lipid amphiphile, Rhodamine Green(TM)-tetradecylamide (RG-C(14:0)), to bovine serum albumin were characterized in an equilibrium titration and by stopped-flow fluorimetry. The binding equilibrium of RG-C(14:0) to albumin was then used to reduce its concentration in the aqueous phase to a value below its critical micelle concentration. Under these conditions, the only two species of RG-C(14:0) in the system were the monomer in aqueous solution in equilibrium with the protein-bound species. After previous determination of the kinetic and thermodynamic parameters for association of RG-C(14:0) with albumin, the kinetics of insertion of the amphiphile into and desorption off lipid bilayer membranes in different phases (solid, liquid-ordered, and liquid-disordered phases, presented as large unilamellar vesicles) were studied by stopped-flow fluorimetry at 30 degrees C. Insertion and desorption rate constants for association of the RG-C(14:0) monomer with the lipid bilayers were used to obtain lipid/water equilibrium partition coefficients for this fluorescent amphiphile. The direct measurement of these partition coefficients is shown to provide a new method for the indirect determination of the equilibrium partition coefficient of similar molecules between two defined lipid phases if they coexist in the same membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。