Transcriptional and physiological responses to chronic ACTH treatment by the mouse kidney.

阅读:7
作者:Dunbar Donald R, Khaled Hiba, Evans Louise C, Al-Dujaili Emad A S, Mullins Linda J, Mullins John J, Kenyon Christopher J, Bailey Matthew A
We investigated the effects on urinary steroid and electrolyte excretion and renal gene expression of chronic infusions of ACTH in the mouse. ACTH caused a sustained increase in corticosteroid excretion; aldosterone excretion was only transiently elevated. There was an increase in the excretion of deoxycorticosterone, a weak mineralocorticoid, to levels of physiological significance. Nevertheless, we observed neither antinatriuresis nor kaliuresis in ACTH-treated mice, and plasma renin activity was not suppressed. We identified no changes in expression of mineralocorticoid target genes. Water turnover was increased in chronic ACTH-treated mice, as were hematocrit and hypertonicity: volume contraction is consistent with high levels of glucocorticoid. ACTH-treated mice exhibited other signs of glucocorticoid excess, such as enhanced weight gain and involution of the thymus. We identified novel ACTH-induced changes in 1) genes involved in vitamin D (Cyp27b1, Cyp24a1, Gc) and calcium (Sgk, Calb1, Trpv5) metabolism associated with calciuria and phosphaturia; 2) genes that would be predicted to desensitize the kidney to glucocorticoid action (Nr3c1, Hsd11b1, Fkbp5); and 3) genes encoding transporters of enzyme systems associated with xenobiotic metabolism and oxidative stress. Although there is evidence that ACTH-induced hypertension is a function of physiological cross talk between glucocorticoids and mineralocorticoids, the present study suggests that the major changes in electrolyte and fluid homeostasis and renal function are attributable to glucocorticoids. The calcium and organic anion metabolism pathways that are affected by ACTH may explain some of the known adverse effects associated with glucocorticoid excess.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。