Enhanced long-term corrosion resistance and self-healing of epoxy coating with HQ-Zn-PA nanocomposite.

阅读:4
作者:Gharieh Ali, Sharifian Ako, Dadkhah Shakiba
This study developed a self-healing, anti-corrosive coating based on a novel nanocomposite formulation of 8-hydroxyquinoline-5-sulfonic acid-zinc doped polyaniline (HQZn-PA) incorporated into an epoxy matrix. The chemical composition and surface morphology of the synthesized nanocomposite were thoroughly characterized using Fourier transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization tests confirmed the outstanding corrosion resistance and self-healing efficiency of the coating. The synthesized HQZn-PA demonstrates enhanced anticorrosive properties through the synergistic effects of its constituents. Polyaniline (PA) contributes anodic protection and forms a barrier layer, while the chelation of zinc by 8-hydroxyquinoline-5-sulfonic acid (HQZn) improves PA compatibility within the polymer matrix and functions as an organic corrosion inhibitor. This dual action strengthens corrosion resistance through both anodic and cathodic protection mechanisms. The HQZn-PA nanocomposite reduced the corrosion rate of epoxy coating by 450× compared and maintained an impedance modulus of 1.03 × 10(10) Ω cm(2) after 40 days in a saline environment. The nanocomposite also demonstrated a self-healing efficiency of 99.28% in scratched coatings. These results highlight the potential of HQZn-PA as a highly effective corrosion inhibitor and self-healing agent for long-term metal protection in harsh environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。