Inflammation induced by inhaled lipopolysaccharide depends on particle size in healthy volunteers.

阅读:4
作者:Doyen Virginie, Pilcer Gabrielle, Dinh Phong Huy Duc, Corazza Francis, Bernard Alfred, Bergmann Pierre, Lefevre Nicolas, Amighi Karim, Michel Olivier
AIMS: In drug development, the anti-inflammatory properties of new molecules in the lung are currently tested using the inhaled lipopolysaccharide (LPS) model. The total and regional lung bioavailability of inhaled particles depends significantly on their size. The objective of the present study was to compare inflammatory responses in healthy volunteers after the inhalation of LPS of varying droplet size. METHODS: Three nebulizers were characterized by different droplet size distributions [mean mass median aerodynamic diameters: Microcirrus (2.0 μm), MB2 (3.2 μm) and Pari (7.9 μm)]. Participants inhaled three boluses of a 20 μg (technetium 99 m-labelled) solution of LPS, randomly delivered by each nebulizer. We measured the lung deposition of the nebulized LPS by gamma-scintigraphy, while blood and sputum biomarkers were evaluated before and after challenges. RESULTS: MB2 and Pari achieved greater lung deposition than Microcirrus [171.5 (±72.9) and 217.6 (±97.8) counts pixel(-1) , respectively, vs. 67.9 (±20.6) counts pixel(-1) ; P < 0.01]. MB2 and Pari caused higher levels of blood C-reactive protein and more total cells and neutrophils in sputum compared with Microcirrus (P < 0.05). C-reactive protein levels correlated positively with lung deposition (P < 0.01). CONCLUSIONS: Inhalation of large droplets of LPS gave rise to greater lung deposition and induced a more pronounced systemic and bronchial inflammatory response than small droplets. The systemic inflammatory response correlated with lung deposition. NCT01081392.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。