Co-occurrence of mycotoxins and other fungal metabolites in total mixed rations of cows from dairy farms in Punjab, Pakistan.

阅读:3
作者:Penagos-Tabares Felipe, Mahmood Mubarik, Khan Muhammad Zafar Ullah, Talha Hafiz Muhammad Amjad, Sajid Muhammad, Rafique Kanwal, Naveed Saima, Faas Johannes, Artavia Juan Ignacio, Sulyok Michael, Müller Anneliese, Krska Rudolf, Zebeli Qendrim
After India and the USA, Pakistan is the third country leading in global dairy production, a sector of very high socioeconomic relevance in Asia. Mycotoxins can affect animal health, reproduction and productivity. This study analysed a broad range of co-occurring mycotoxins and fungal secondary metabolites derived from Alternaria, Aspergillus, Fusarium, Penicillium and other fungal species. To complete this, a validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was employed, detecting 96 of > 500 tested secondary fungal metabolites. This first preliminary study demonstrated that total mixed rations (TMRs) (n = 30) from big commercial dairy cattle farms (> 200 lactating cows) in Punjab, Pakistan, presented ubiquitous contamination with mixtures of mycotoxins. The mean of mycotoxins per sample was 14, ranging from 11 to 20 mycotoxins among all TMR samples. Metabolites derived from other fungi and Fusarium spp. showed the highest levels, frequency and diversity among the detected fungal compounds. Among the most prevalent mycotoxins were Fusarium toxins like fumonisins B1 (FB1) (93%), B2 (FB2) (100%) and B3 (FB3) (77%) and others. Aflatoxin B1 (AFB1) was evidenced in 40% of the samples, and 7% exceeded the EU maximum limit for feeding dairy cattle (5 µg/kg at 88% dry matter). No other mycotoxin exceeds the EU guidance values (GVs). Additionally, we found that dietary ingredients like corn grain, soybean meal and canola meal were related to increased contamination of some mycotoxins (like FB1, FB2 and FB3) in TMR from the province of Punjab, Pakistan. Among typical forage sources, the content of maize silage was ubiquitous. Individually, the detected mycotoxins represented relatively low levels. However, under a realistic scenario, long-term exposure to multiple mycotoxins and other fungal secondary metabolites can exert unpredictable effects on animal health, reproduction and productivity. Except for ergot alkaloids (73%), all the groups of metabolites (i.e. derived from Alternaria spp., Aspergillus spp., Fusarium spp., Penicillium spp. and other fungi) occurred in 100% of the TMR samples. At individual levels, no other mycotoxins than AFB1 represented a considerable risk; however, the high levels of co-occurrence with several mycotoxins/metabolites suggest that long-term exposure should be considered because of their potential toxicological interactions (additive or synergistic effects).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。