Case-control association testing with related individuals: a more powerful quasi-likelihood score test.

阅读:4
作者:Thornton Timothy, McPeek Mary Sara
We consider the problem of genomewide association testing of a binary trait when some sampled individuals are related, with known relationships. This commonly arises when families sampled for a linkage study are included in an association study. Furthermore, power to detect association with complex traits can be increased when affected individuals with affected relatives are sampled, because they are more likely to carry disease alleles than are randomly sampled affected individuals. With related individuals, correlations among relatives must be taken into account, to ensure validity of the test, and consideration of these correlations can also improve power. We provide new insight into the use of pedigree-based weights to improve power, and we propose a novel test, the MQLS test, which, as we demonstrate, represents an overall, and in many cases, substantial, improvement in power over previous tests, while retaining a computational simplicity that makes it useful in genomewide association studies in arbitrary pedigrees. Other features of the MQLS are as follows: (1) it is applicable to completely general combinations of family and case-control designs, (2) it can incorporate both unaffected controls and controls of unknown phenotype into the same analysis, and (3) it can incorporate phenotype data about relatives with missing genotype data. The methods are applied to data from the Genetic Analysis Workshop 14 Collaborative Study of the Genetics of Alcoholism, where the MQLS detects genomewide significant association (after Bonferroni correction) with an alcoholism-related phenotype for four different single-nucleotide polymorphisms: tsc1177811 (P=5.9x10(-7)), tsc1750530 (P=4.0x10(-7)), tsc0046696 (P=4.7x10(-7)), and tsc0057290 (P=5.2x10(-7)) on chromosomes 1, 16, 18, and 18, respectively. Three of these four significant associations were not detected in previous studies analyzing these data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。