Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70]fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells.

阅读:4
作者:Wang Min, Huang Liyi, Sharma Sulbha K, Jeon Seaho, Thota Sammaiah, Sperandio Felipe F, Nayka Suhasini, Chang Julie, Hamblin Michael R, Chiang Long Y
Novel water-soluble decacationically armed C(60) and C(70) decaiodide monoadducts, C(60)- and C(70)[>M(C(3)N(6)(+)C(3))(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C(70)[>M(C(3)N(6)(+)C(3))(2)] produced more HO(•) than C(60)[>M(C(3)N(6)(+)C(3))(2)], in addition to (1)O(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C(60)[>M(C(3)N(6)(+)C(3))(2)] and C(70)[>M(C(3)N(6)(+)C(3))(2)], respectively. The hypothesis is that (1)O(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO(•) to cause real damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。